15 research outputs found

    Adversarial Reweighting for Speaker Verification Fairness

    Full text link
    We address performance fairness for speaker verification using the adversarial reweighting (ARW) method. ARW is reformulated for speaker verification with metric learning, and shown to improve results across different subgroups of gender and nationality, without requiring annotation of subgroups in the training data. An adversarial network learns a weight for each training sample in the batch so that the main learner is forced to focus on poorly performing instances. Using a min-max optimization algorithm, this method improves overall speaker verification fairness. We present three different ARWformulations: accumulated pairwise similarity, pseudo-labeling, and pairwise weighting, and measure their performance in terms of equal error rate (EER) on the VoxCeleb corpus. Results show that the pairwise weighting method can achieve 1.08% overall EER, 1.25% for male and 0.67% for female speakers, with relative EER reductions of 7.7%, 10.1% and 3.0%, respectively. For nationality subgroups, the proposed algorithm showed 1.04% EER for US speakers, 0.76% for UK speakers, and 1.22% for all others. The absolute EER gap between gender groups was reduced from 0.70% to 0.58%, while the standard deviation over nationality groups decreased from 0.21 to 0.19

    The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    Full text link

    Efficient Approach to Correct Read Alignment for Pseudogene Abundance Estimates

    No full text

    TahcoRoll: fast genomic signature profiling via thinned automaton and rolling hash

    No full text
    ObjectivesGenomic signatures like k-mers have become one of the most prominent approaches to describe genomic data. As a result, myriad real-world applications, such as the construction of de Bruijn graphs in genome assembly, have been benefited by recognizing genomic signatures. In other words, an efficient approach of genomic signature profiling is an essential need for tackling high-throughput sequencing reads. However, most of the existing approaches only recognize fixed-size k-mers while many research studies have shown the importance of considering variable-length k-mers.MethodsIn this paper, we present a novel genomic signature profiling approach, TahcoRoll, by extending the Aho-Corasick algorithm (AC) for the task of profiling variable-length k-mers. We first group nucleotides into two clusters and represent each cluster with a bit. The rolling hash technique is further utilized to encode signatures and read patterns for efficient matching.ResultsIn extensive experiments, TahcoRoll significantly outperforms the most state-of-the-art k-mer counters and has the capability of processing reads across different sequencing platforms on a budget desktop computer.ConclusionsThe single-thread version of TahcoRoll is as efficient as the eight-thread version of the state-of-the-art, JellyFish, while the eight-thread TahcoRoll outperforms the eight-thread JellyFish by at least four times

    Molecular events of apical bud formation in white spruce, Picea glauca

    No full text
    Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce.Peer reviewed: YesNRC publication: Ye
    corecore